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Scalar Casimir effect in a circular Aharonov–Bohm
quantum billiard

August Romeo-i-Val†
Blanes Centre for Advanced Studies (CEAB), CSIC, Camı́ de Santa B̀arbara, 17300 Blanes, La
Selva (Girona-Catalonia), Spain

Received 18 December 1995

Abstract. This is a study of the Casimir energy associated to a circular quantum billiard
threaded by a single line of flux coming from an external magnetic field. Zero-point energies
are calculated after applying zeta-function regularization to eigenmode sums and using some
recently obtained representations of Bessel zeta functions for negative arguments. The overall
flux dependence can be approximated by a quadratic curve.

1. Introduction

Let us consider the quantum mechanical problem of a scalar particle inside a circular
Aharonov–Bohm quantum billiard [1–4] of radiusa from the viewpoint of field theory. We
take a massless field, with a space-dependent part which we callφ, and whose eigenmodes
ω satisfy the equation (in units such that ¯h = c = 1)

(−i∇ − eA)2 φ = ω2φ (1.1)

where the vector potentialA is given by

Ar = 0 Aϕ = 8

2πr
(1.2)

and

α = e8

2π
(1.3)

is called thereduced flux. Since a billiard is a domain with perfectly reflecting walls, and
we imagine an infinitely thin solenoid at the origin—reduced, inD = 2, to an unattainable
point—the boundary conditions areφ = 0 at r = 0 and r = a. When there is no flux
(free case), the eigenmodes in these circumstances are the zeros of Bessel functions with
integer indicesl coming from the angular momentum. The solutions for non-zeroα have
been found in [1, 4], and basically correspond to an index shift with respect to the free case
|l| → |l − α|. Later we shall deal with the associated spectrum, but we will first briefly
review the zeta function formalism for calculating Casimir energies.

Zero-point energies emerge from mode-sums1
2

∑
n ωn, and give rise to the celebrated

Casimir effect [5–8] (if we were not using the typical QFT units, we should add a factor ¯hc

to this sum). Note that the summation extends over all theωn’s in the set of eigenmodes.
As a result, such quantities do usually diverge and call for some regularization to make
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sense of them. To this end, we introduce the usual spectral zeta functions, which will be
denoted by

ζM(s) =
∑

n

ω−s
n ζM/µ(s) =

∑
n

(
ωn

µ

)−s

. (1.4)

whereµ is an arbitrary scale with mass dimensions, used to work with dimensionless objects.
As they stand, these identities hold only for Res > s0, beings0 a positive value given by the
rightmost pole ofζM(s). However, such a function admits analytic continuation to other
values ofs, in particular, to negative reals. Then, the finite part of the vacuum energy,
EC , can be found by combining zeta-regularization of the mode-sum and a principal part
prescription from [8]:

EC(µ) = df PP
s→−1

[
1

2
µ ζM/µ(s)

]
(1.5)

where PP denotes principal part anddf is the number of degrees of freedom associated with
the field (in our case, reasoning as in [9], for example, one realizes thatdf = 2). Evidently,
for this procedure to work we must be able to obtain the analytic continuation ofζM(s) at
least to a part of the negative real axis reachings = −1. This point makes our mathematical
problem completely different to that in [1–4]; there the aim was the calculation of the ground
state energy (and even the next low-lying energies) by the spectral sum method, which only
needs values ofζM(s) at positives’s. Now, the analytic continuation of the spectral zeta
function to the negative real axis appears as a non-trivial matter.

Since in free or Aharonov–Bohm circular quantum billiards the eigenmodes are zeros
of Jν Bessel functions, we shall introduce the following ‘partial-wave’ zeta functions for
fixed values ofν:

ζν(s) =
∞∑

n=1

j−s
ν,n for Res > 1 (1.6)

wherejνn denotes thenth non-vanishing zero ofJν (see also [10, 11])†. (Discrete versions
of the Bessel problem, their solutions and associated zeta functions have also been studied
in [15].)

When considering the whole problem in aD-dimensional space, one must take into
account the degeneracyd(D, l) of each angular mode inD dimensions. Therefore, we
define the ‘complete’ spherical zeta function

ζM(s) = as
∞∑

l=lmin

d(D, l)

∞∑
n=1

j−s
ν(D,l),n = as

∞∑
l=lmin

d(D, l) ζν(D,l)(s) (1.7)

wherelmin is the minimum value ofl, ν(D, l) = l+D/2−1 and the general form ofd(D, l)

(see, e.g., [16]) is

d(D, l) = (2l + D − 2)
(l + D − 3)!

l!(D − 2)!
. (1.8)

In section 2 we construct these zeta functions forD = 2, obtaining their analytic continuation
to s = −1. The numerical results for the zero-point energy are discussed in section 3. A
calculation of a necessary derivative of the Hurwitz zeta function is outlined in the appendix.

† In the mathematical literature, this object taken at even integers is sometimes called the Rayleigh function [12].
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2. The spectral zeta function

2.1. The ‘partial-wave’ zeta function

Computing the Casimir energy by (1.5) requires the knowledge of the Bessel zeta
functions (1.6) ats = −1, while the complex domain where (1.6) holds is bounded
by Res = 1. This is a serious difficulty, but we know thatζν(s) admits an analytic
continuation to other values ofs. Moreover, in [10, 11] we showed how to obtain an
integral representation of this continuation valid for−1 < Re s < 0, which reads

ζν(s) = s

π
sin

πs

2

∫ ∞

0
dx x−s−1 ln

[√
2πx e−xIν(x)

]
for − 1 < Res < 0. (2.1)

Wheneverν 6= 0 we can work out (2.1) as explained in [13], arriving at

ζν(s) = 1

4
σ1ν

−s + ν−s s

π
sin

πs

2

[
σ2

{
1

2s
B

(
s + 1

2
, − s

2

)
+ 2s−1B

(
s + 1

2
, −s

)

+2s−1B

(
s + 3

2
, −s

)}
ν + SN(s, ν) + 1

2
ρB

(
s + 1

2
, − s

2

)
1

ν

+J 1(s)
1

ν
+

N∑
n=2

Jn(s)
1

νn

]
with σ1 = −1 σ2 = 1 ρ = 1

8
. (2.2)

In addition

J 1(s) = − 5

24
B

(
s + 3

2
, − s

2

)
Jn(s) =

∫ ∞

0
dx x−s−1 Un(t (x)) t (x) = 1√

1 + x2

(2.3)

where

U1(t) = 1
8t − 5

245t3

U2(t) = 1
16t

2 − 3
8t4 + 5

16t
6

U3(t) = 25
384t

3 − 531
640t

5 + 221
128t

7 − 1105
1152t

9

U4(t) = 13
128t

4 − 71
32t

6 + 531
64 t8 − 339

32 t10 + 565
128t

12

...

(2.4)

and

SN(s, ν) ≡
∫ ∞

0
dx x−s−1

{
ln

[√
2πν(1 + x2)1/4e−νη(x)Iν(νx)

]
−

N∑
n=1

Un(t (x))

νn

}

η(x) =
√

1 + x2 + ln
x

1 + √
1 + x2

(2.5)

the key point being thatSN(s, ν) is a finite integral ats = −1 (The method used in that
reference also has similarities to the technique in [14]).

The expressions for theJn(s)’s are easily obtained from theUn(t)’s in (2.4). In fact,
since ∫ ∞

0
dx x−s−1 t (x)m = 1

2
B

(
s + m

2
, − s

2

)
(2.6)
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the result of the integration is like making the replacement

Un(t) → Jn(s)

tm → 1

2
B

(
s + m

2
, − s

2

)
.

(2.7)

Expression (2.2) is not valid forν = 0, since it was obtained from a rescaling
x → νx and subsequent application of uniform asymptotic expansions inνx. Furthermore,
numerically speaking it is of little use ifν is very small. An alternative representation
valid in these conditions is called for. Starting from (2.1), we introduce 1= √

x(1 +
x2)1/4/

√
x(1 + x2)1/4 into the logarithm, separate ln(

√
x/(1 + x2)1/4) and integrate, which

takes us to

ζν(s) = −1

4
+ s

π
sin

πs

2

∫ ∞

0
dx x−s−1 ln

[√
2π(1 + x2)1/4 e−xIν(x)

]
. (2.8)

Next, we will subtract and add the asymptotic behaviour of the integrand, which gives
rise to a logarithmic divergence on integration. When doing so, we shall write the large-x

expansion of ln[· · ·] as follows:

ln
[√

2π(1 + x2)1/4 e−xIν(x)
]

= −4ν2 − 1

8x
+ O

(
1

x2

)
= − 4ν2 − 1

8
√

x2 + 1
+ O

(
1

x2 + 1

)
.

(2.9)

Thus, the piece we separate can be integrated with the help of (2.6) (m = 1 case) and we
are left with

ζν(s) = −1

4
+ s

π
sin

πs

2

[
Tν(s) − 4ν2 − 1

16
B

(
s + 1

2
, − s

2

)]
Tν(s) =

∫ ∞

0
dx x−s−1

{
ln

[√
2π(1 + x2)1/4 e−xIν(x)

]
+ 4ν2 − 1

8
√

x2 + 1

}
.

(2.10)

Since the above integral is now finite ats = −1 we can Laurent-expand without any
difficulty abouts = −1, finding

ζν(s) = 1 − 4ν2

8π

1

s + 1
+ 1 − 4ν2

8π
(−1 + ln 2) − 1

4
+ 1

π
Tν(−1) + O(s + 1). (2.11)

In particular, forν = 0, T0(−1) = 0.7782 and

ζ0(s) = 1

8π

1

s + 1
− 0.0145+ O(s + 1). (2.12)

2.1.1. The ‘complete’ zeta function.Next, we go on to the two-dimensional problem. For
the free case inD = 2

d(2, l) =
{

d(2, 0) = 1

d(2, l) = 2 for l 6= 0

and ν(2, l) = l, l > 0. However, as has already been commented, when a magnetic flux
line threads the origin theν’s become|l − α|’s ([1, 4]). Therefore, the mode sum yields
the following complete spectral zeta function

εsζM(s; α) =
∞∑

l=−∞
ζ|l−α|(s) (2.13)
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(in our case,ε = a−1). Since this function has the properties

ζM(s; α + k) = ζM(s; α) k ∈ Z
ζM(s; −α) = ζM(s; α)

(2.14)

(see [4]), it is enough to study it for 06 α 6 1
2. Introducing

ζM(s; β) ≡ as
∞∑
l=0

ζl+β(s) (2.15)

we can write

ζM(s; α) = ζM(s; α) + ζM(s; 1 − α) (2.16)

= asζ|α|(s) + ζM(s; 1 + α) + ζM(s; 1 − α). (2.17)

Next we insert expression (2.2) into (2.15) and, using
∞∑
l=0

(l + β)−s = ζH(s, β) (2.18)

whereζH stands for the Hurwitz zeta function, we find

ζM(s; β) = 1

4
σ1a

sζH(s, β) + as s

π
sin

πs

2

[
σ2

{
1

2s
B

(
s + 1

2
, − s

2

)

+2s−1B

(
s + 1

2
, −s

)
+ 2s−1B

(
s + 3

2
, −s

)}
ζH(s − 1, β)

+SN(s, l + β)(l + β)−s + 1

2
ρB

(
s + 1

2
, − s

2

)
ζH(s + 1, β)

+J 1(s)ζH(s + 1, β) +
N∑

n=2

Jn(s)ζH(s + n, β)

]
(2.19)

where the values ofσ1, σ2 andρ are those in (2.2). TakingN = 4 and Laurent-expanding,
this may be written as

ζM(s; β) = 1

a

[
−1

4
ζH(−1, β) + 1

π

{
1

4
ζH(−2, β) − 5

24
ζH(0, β) − 229

40320
ζH(2, β)

+ 35

65536
ζH(3, β) +

∞∑
l=0

S4(−1, l + β)(l + β)

+
(

− π

256
− 1

2
ζH(−2, β) + 1

8
ζH(0, β)

) (
1

s + 1
+ ln a − 1

)

− π

64
+ ln 2

16
− β

ln 2

8
+ πψ(β)

256
−

(
1 + 1

2
ln 2

)
ζH(−2, β)

−1

2
ζ ′

H(−2, β) + 1

8
ζ ′

H(0, β)

}
+ O(s + 1)

]
. (2.20)

Concerning the pole ats = −1 of the complete zeta function, by (2.17), (2.11) and
(2.20), and noticing thatζH(−2, 1 + α) + ζH(−2, 1 − α) = −α2, we come to

ζM(s; α) = 1

a

[
− 1

128

1

s + 1
+ O((s + 1)0)

]
(2.21)
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i.e. the residue is independent ofα.
Since we plan to use the same three formulae for calculating the finite parts, it will be

necessary to obtainζ ′
H(−2, β) and ζ ′

H(0, β) aboutβ = 1. The second is known (see, e.g.,
[17]) and amounts to

ζ ′
H(0, β) = ln 0(β) − 1

2 ln(2π) (2.22)

but the first will still give us still some further trouble. Details about its numerical evaluation
are supplied in the appendix.

3. Numerical results and comments

We start by thel = 0 partial wave zeta-functions obtained from (2.11). Since we are
supposingα > 0, the results will be denoted by

asζα(s) = 1

a

[
rα

(
1

s + 1
+ ln a

)
+ pα

]
+ O(s + 1) (3.1)

where the residuesrα and the finite partspα are listed in table 1. The absence of a pole
for α = 1

2 may be regarded as a consequence of the fact thatJ1/2(x) ∝ sinx, and therefore
ζ1/2(x) = π−sζR(s) (ζR meaning the Riemann zeta function), which is finite ats = −1
becauseζR(−1) = −1/12. Next, we findζM(s; β) from (2.20) for the corresponding
β = 1 ± α’s. We shall employ the notation

ζM(s; β) = 1

a

[
rβ

(
1

s + 1
+ ln a

)
+ pβ

]
+ O(s + 1) (3.2)

and listrβ , pβ in table 2. Now using equation (2.17) and the above results we get

ζM(s; α) = 1

a

[
− 1

128

(
1

s + 1
+ ln a

)
+ qα

]
+ O(s + 1) (3.3)

where theα-indepedence of the resdiue has already been explained, and

qα = pα + p1+α + p1−α.

The values ofqα for differentα’s between 0 and12 are given in table 3. By equation (1.5),
the zeta-regularized and PP-renormalized Casimir energy is

EC(µ, a, α) = 1

a

[
− 1

128
ln(aµ) + qα

]
. (3.4)

In particular forα = 0 one gets the vacuum energy of afree scalar field inside the circular
domain and satisfying the Dirichlet condition on the boundary, which is

EC(µ, a, α = 0) = 1

a

[
− 1

128
ln(aµ) + 0.0090

]
.

Table 1. Residues and finite parts of thel = 0 partial wave zeta function ats = −1.

α rα pα

0 1/8π = 0.0398 −0.0145
0.1 0.12/π = 0.0382 −0.0597
0.2 0.105/π = 0.0334 −0.1077
0.3 0.08/π = 0.0225 −0.1578
0.4 0.045/π = 0.0143 −0.2093
1
2 0 −π/12 = −0.2618
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Table 2. Residues and finite parts of the zeta functionζM(s; β) at s = −1.

β rβ pβ

1
2 −1/256= −0.0039 −0.0547
0.6 −0.0165/π − 1/256= −0.0091 −0.0510
0.7 −0.032/π − 1/256= −0.0141 −0.0429
0.8 −0.0455/π − 1/256= −0.0184 −0.0299
0.9 −0.056/π − 1/256= −0.0217 −0.0117
1 −1/16π − 1/256= −0.0238 0.0117
1.1 −0.064/π − 1/256= −0.0243 0.0406
1.2 −0.0595/π − 1/256= −0.0228 0.0749
1.3 −0.048/π − 1/256= −0.0192 0.1146
1.4 −0.0285/π − 1/256= −0.0130 0.1597
3
2 −1/256= −0.0039 0.2100

Table 3. Finite parts of the complete zeta function ats = −1.

α qα

0 0.0090
0.1 −0.0308
0.2 −0.0627
0.3 −0.0860
0.4 −0.1006
0.5 −0.1065

Figure 1. Zero-point energy atµ = 1/a and a = 1, as a function of the reduced
flux α. Clearly, this function is fairly well approximated by a second-degree polynomial (here
0.426α2 − 0.444α + 0.009).

Taking µ = 1/a, a = 1, this zero-point energy is plotted in figure 1 as a function ofα.
Although all this is fors = −1, the energy is easily approximated by a second degree
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polynomial, as happens also withζM(s = 2; α) (the first reference cited in [1]). The issue
of the physical character of this magnitude remains somewhat on an unsatisfactory footing,
as equation (3.4) is a scheme-dependent result. However, given that before extracting finite
parts all infinities areα-independent, we may conjecture that different renormalizations just
fix the origin but theα-dependence remains unchanged. Specifically, in our scheme and in
the conditions of figure 1, we realize that the effect of introducing magnetic flux is to lower
the zero-point energy of the free case, reversing its sign atα ' 0.02.

Appendix. s-derivative of the Hurwitz zeta function ζH(s, β) at s = −2 about β = 1

Here we outline our method for the numerical calculation of

ζ ′
H(−2, β) = d

ds
ζH(s, β)

∣∣∣∣
s=−2

whenβ is close to 1. Forβ = 1+ α (small α) we haveζH(s, 1+ α) = ζH(s, α) − α−s and
therefore

ζ ′
H(−2, 1 + α) = ζ ′

H(−2, α) + α2 ln α. (A.1)

Let us findζ ′
H(−2, α) aboutα = 0. First we take

ζH(z, α) = α−z + 1

0(z)

∞∑
k=0

(−1)k

k!
αk0(z + k)ζR(z + k) (A.2)

valid when Rez is large enough (ζR denotes the Riemann zeta function). We shall continue
it back toz = −2, being very careful with all the terms containing poles and zeros at this
point. Then

ζH(−2 + ε, α) = α2(1 − ε ln α) +
2∑

k=0

2αk

k!(2 − k)!

{
ζR(k − 2) + [

ζ ′
R(k − 2)

+ζR(k − 2)(ψ(3 − k) − ψ(3))
]
ε
}

−α3

3
(1 − ψ(3)ε) + 2ε

∞∑
k=4

(−1)k

k!
αk0(k − 2)ζR(k − 2) + O(ε2) (A.3)

and the r.h.s. of (A.1) is given by

d

dε
ζH(−2 + ε, α)

∣∣∣∣
ε=0

+ α2 ln α

=
2∑

k=0

2αk

k!(2 − k)!

[
ζ ′

R(k − 2) + ζR(k − 2)(ψ(3 − k) − ψ(3))
]

+α3

3
ψ(3) + 2

∞∑
k=4

(−1)k

k!
αk0(k − 2)ζR(k − 2). (A.4)

This is the series to be used for the required numerical calculations. When applying it, we
will bear in mind that the first two terms contain

ζ ′
R(−2) = − 1

4π2
ζR(3) = −0.030 448

ζ ′
R(−1) = −0.165 421

ζ ′
R(0) = − 1

2 ln(2π)

(A.5)
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where the first result comes from the Riemann zeta function reflexion formula, the second
may be found, e.g., in [18] and the third is theβ = 1 case of (2.22).
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