Scalar Casimir effect in a circular Aharonov - Bohm quantum billiard

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 293697
(http://iopscience.iop.org/0305-4470/29/13/034)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 03:55

Please note that terms and conditions apply.

Scalar Casimir effect in a circular Aharonov-Bohm quantum billiard

August Romeo-i-Val \dagger
Blanes Centre for Advanced Studies (CEAB), CSIC, Camí de Santa Bàrbara, 17300 Blanes, La Selva (Girona-Catalonia), Spain

Received 18 December 1995

Abstract

This is a study of the Casimir energy associated to a circular quantum billiard threaded by a single line of flux coming from an external magnetic field. Zero-point energies are calculated after applying zeta-function regularization to eigenmode sums and using some recently obtained representations of Bessel zeta functions for negative arguments. The overall flux dependence can be approximated by a quadratic curve.

1. Introduction

Let us consider the quantum mechanical problem of a scalar particle inside a circular Aharonov-Bohm quantum billiard [1-4] of radius a from the viewpoint of field theory. We take a massless field, with a space-dependent part which we call ϕ, and whose eigenmodes ω satisfy the equation (in units such that $\hbar=c=1$)

$$
\begin{equation*}
(-\mathrm{i} \boldsymbol{\nabla}-e \boldsymbol{A})^{2} \phi=\omega^{2} \phi \tag{1.1}
\end{equation*}
$$

where the vector potential \boldsymbol{A} is given by

$$
\begin{equation*}
A_{r}=0 \quad A_{\varphi}=\frac{\Phi}{2 \pi r} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha=\frac{e \Phi}{2 \pi} \tag{1.3}
\end{equation*}
$$

is called the reduced flux. Since a billiard is a domain with perfectly reflecting walls, and we imagine an infinitely thin solenoid at the origin-reduced, in $D=2$, to an unattainable point-the boundary conditions are $\phi=0$ at $r=0$ and $r=a$. When there is no flux (free case), the eigenmodes in these circumstances are the zeros of Bessel functions with integer indices l coming from the angular momentum. The solutions for non-zero α have been found in $[1,4]$, and basically correspond to an index shift with respect to the free case $|l| \rightarrow|l-\alpha|$. Later we shall deal with the associated spectrum, but we will first briefly review the zeta function formalism for calculating Casimir energies.

Zero-point energies emerge from mode-sums $\frac{1}{2} \sum_{n} \omega_{n}$, and give rise to the celebrated Casimir effect [5-8] (if we were not using the typical QFT units, we should add a factor $\hbar c$ to this sum). Note that the summation extends over all the ω_{n} 's in the set of eigenmodes. As a result, such quantities do usually diverge and call for some regularization to make

[^0]sense of them. To this end, we introduce the usual spectral zeta functions, which will be denoted by
\[

$$
\begin{equation*}
\zeta_{\mathcal{M}}(s)=\sum_{n} \omega_{n}^{-s} \quad \zeta_{\mathcal{M} / \mu}(s)=\sum_{n}\left(\frac{\omega_{n}}{\mu}\right)^{-s} \tag{1.4}
\end{equation*}
$$

\]

where μ is an arbitrary scale with mass dimensions, used to work with dimensionless objects. As they stand, these identities hold only for $\operatorname{Re} s>s_{0}$, being s_{0} a positive value given by the rightmost pole of $\zeta_{\mathcal{M}}(s)$. However, such a function admits analytic continuation to other values of s, in particular, to negative reals. Then, the finite part of the vacuum energy, E_{C}, can be found by combining zeta-regularization of the mode-sum and a principal part prescription from [8]:

$$
\begin{equation*}
E_{C}(\mu)=d_{f} \underset{s \rightarrow-1}{ }\left[\frac{1}{2} \mu \zeta_{\mathcal{M} / \mu}(s)\right] \tag{1.5}
\end{equation*}
$$

where PP denotes principal part and d_{f} is the number of degrees of freedom associated with the field (in our case, reasoning as in [9], for example, one realizes that $d_{f}=2$). Evidently, for this procedure to work we must be able to obtain the analytic continuation of $\zeta_{\mathcal{M}}(s)$ at least to a part of the negative real axis reaching $s=-1$. This point makes our mathematical problem completely different to that in [1-4]; there the aim was the calculation of the ground state energy (and even the next low-lying energies) by the spectral sum method, which only needs values of $\zeta_{\mathcal{M}}(s)$ at positive s 's. Now, the analytic continuation of the spectral zeta function to the negative real axis appears as a non-trivial matter.

Since in free or Aharonov-Bohm circular quantum billiards the eigenmodes are zeros of J_{v} Bessel functions, we shall introduce the following 'partial-wave' zeta functions for fixed values of v :

$$
\begin{equation*}
\zeta_{\nu}(s)=\sum_{n=1}^{\infty} j_{v, n}^{-s} \quad \text { for } \quad \operatorname{Re} s>1 \tag{1.6}
\end{equation*}
$$

where $j_{v n}$ denotes the nth non-vanishing zero of J_{v} (see also $[10,11]$) \dagger. (Discrete versions of the Bessel problem, their solutions and associated zeta functions have also been studied in [15].)

When considering the whole problem in a D-dimensional space, one must take into account the degeneracy $d(D, l)$ of each angular mode in D dimensions. Therefore, we define the 'complete' spherical zeta function
$\zeta_{\mathcal{M}}(s)=a^{s} \sum_{l=l_{\min }}^{\infty} d(D, l) \sum_{n=1}^{\infty} j_{v(D, l), n}^{-s}=a^{s} \sum_{l=l_{\text {min }}}^{\infty} d(D, l) \zeta_{v(D, l)}(s)$
where $l_{\min }$ is the minimum value of $l, v(D, l)=l+D / 2-1$ and the general form of $d(D, l)$ (see, e.g., [16]) is

$$
\begin{equation*}
d(D, l)=(2 l+D-2) \frac{(l+D-3)!}{l!(D-2)!} \tag{1.8}
\end{equation*}
$$

In section 2 we construct these zeta functions for $D=2$, obtaining their analytic continuation to $s=-1$. The numerical results for the zero-point energy are discussed in section 3. A calculation of a necessary derivative of the Hurwitz zeta function is outlined in the appendix.

[^1]
2. The spectral zeta function

2.1. The 'partial-wave' zeta function

Computing the Casimir energy by (1.5) requires the knowledge of the Bessel zeta functions (1.6) at $s=-1$, while the complex domain where (1.6) holds is bounded by $\operatorname{Re} s=1$. This is a serious difficulty, but we know that $\zeta_{v}(s)$ admits an analytic continuation to other values of s. Moreover, in $[10,11]$ we showed how to obtain an integral representation of this continuation valid for $-1<\operatorname{Re} s<0$, which reads
$\zeta_{\nu}(s)=\frac{s}{\pi} \sin \frac{\pi s}{2} \int_{0}^{\infty} \mathrm{d} x x^{-s-1} \ln \left[\sqrt{2 \pi x} \mathrm{e}^{-x} I_{\nu}(x)\right] \quad$ for $\quad-1<\operatorname{Re} s<0$.
Whenever $v \neq 0$ we can work out (2.1) as explained in [13], arriving at

$$
\begin{align*}
\zeta_{v}(s)=\frac{1}{4} \sigma_{1} v^{-s} & +v^{-s} \frac{s}{\pi} \sin \frac{\pi s}{2}\left[\sigma _ { 2 } \left\{\frac{1}{2 s} B\left(\frac{s+1}{2},-\frac{s}{2}\right)+2^{s-1} B\left(\frac{s+1}{2},-s\right)\right.\right. \\
& \left.+2^{s-1} B\left(\frac{s+3}{2},-s\right)\right\} v+\mathcal{S}_{N}(s, v)+\frac{1}{2} \rho B\left(\frac{s+1}{2},-\frac{s}{2}\right) \frac{1}{v} \\
& \left.+\overline{\mathcal{J}}_{1}(s) \frac{1}{v}+\sum_{n=2}^{N} \mathcal{J}_{n}(s) \frac{1}{v^{n}}\right] \quad \text { with } \sigma_{1}=-1 \quad \sigma_{2}=1 \quad \rho=\frac{1}{8} \tag{2.2}
\end{align*}
$$

In addition

$$
\begin{align*}
& \overline{\mathcal{J}}_{1}(s)=-\frac{5}{24} B\left(\frac{s+3}{2},-\frac{s}{2}\right) \\
& \mathcal{J}_{n}(s)=\int_{0}^{\infty} \mathrm{d} x x^{-s-1} \mathcal{U}_{n}(t(x)) \quad t(x)=\frac{1}{\sqrt{1+x^{2}}} \tag{2.3}
\end{align*}
$$

where

$$
\begin{align*}
& \mathcal{U}_{1}(t)=\frac{1}{8} t-\frac{5}{24} 5 t^{3} \\
& \mathcal{U}_{2}(t)=\frac{1}{16} t^{2}-\frac{3}{8} t^{4}+\frac{5}{16} t^{6} \\
& \mathcal{U}_{3}(t)=\frac{25}{384} t^{3}-\frac{531}{640} t^{5}+\frac{212}{128} t^{7}-\frac{1105}{1152} t^{9} \tag{2.4}\\
& \mathcal{U}_{4}(t)=\frac{13}{128} t^{4}-\frac{71}{32} t^{6}+\frac{531}{64} t^{8}-\frac{339}{32} t^{10}+\frac{565}{128} t^{12}
\end{align*}
$$

and
$\mathcal{S}_{N}(s, v) \equiv \int_{0}^{\infty} \mathrm{d} x x^{-s-1}\left\{\ln \left[\sqrt{2 \pi v}\left(1+x^{2}\right)^{1 / 4} \mathrm{e}^{-v \eta(x)} I_{\nu}(v x)\right]-\sum_{n=1}^{N} \frac{\mathcal{U}_{n}(t(x))}{v^{n}}\right\}$
$\eta(x)=\sqrt{1+x^{2}}+\ln \frac{x}{1+\sqrt{1+x^{2}}}$
the key point being that $S_{N}(s, v)$ is a finite integral at $s=-1$ (The method used in that reference also has similarities to the technique in [14]).

The expressions for the $\mathcal{J}_{n}(s)$'s are easily obtained from the $\mathcal{U}_{n}(t)$'s in (2.4). In fact, since

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{d} x x^{-s-1} t(x)^{m}=\frac{1}{2} B\left(\frac{s+m}{2},-\frac{s}{2}\right) \tag{2.6}
\end{equation*}
$$

the result of the integration is like making the replacement

$$
\begin{align*}
\mathcal{U}_{n}(t) & \rightarrow \mathcal{J}_{n}(s) \\
t^{m} & \rightarrow \frac{1}{2} B\left(\frac{s+m}{2},-\frac{s}{2}\right) . \tag{2.7}
\end{align*}
$$

Expression (2.2) is not valid for $v=0$, since it was obtained from a rescaling $x \rightarrow \nu x$ and subsequent application of uniform asymptotic expansions in $v x$. Furthermore, numerically speaking it is of little use if v is very small. An alternative representation valid in these conditions is called for. Starting from (2.1), we introduce $1=\sqrt{x}(1+$ $\left.x^{2}\right)^{1 / 4} / \sqrt{x}\left(1+x^{2}\right)^{1 / 4}$ into the logarithm, separate $\ln \left(\sqrt{x} /\left(1+x^{2}\right)^{1 / 4}\right)$ and integrate, which takes us to
$\zeta_{\nu}(s)=-\frac{1}{4}+\frac{s}{\pi} \sin \frac{\pi s}{2} \int_{0}^{\infty} \mathrm{d} x x^{-s-1} \ln \left[\sqrt{2 \pi}\left(1+x^{2}\right)^{1 / 4} \mathrm{e}^{-x} I_{\nu}(x)\right]$.
Next, we will subtract and add the asymptotic behaviour of the integrand, which gives rise to a logarithmic divergence on integration. When doing so, we shall write the large- x expansion of $\ln [\cdots]$ as follows:
$\ln \left[\sqrt{2 \pi}\left(1+x^{2}\right)^{1 / 4} \mathrm{e}^{-x} I_{\nu}(x)\right]=-\frac{4 v^{2}-1}{8 x}+\mathrm{O}\left(\frac{1}{x^{2}}\right)=-\frac{4 v^{2}-1}{8 \sqrt{x^{2}+1}}+\mathrm{O}\left(\frac{1}{x^{2}+1}\right)$.

Thus, the piece we separate can be integrated with the help of (2.6) ($m=1$ case) and we are left with
$\zeta_{v}(s)=-\frac{1}{4}+\frac{s}{\pi} \sin \frac{\pi s}{2}\left[\mathcal{T}_{v}(s)-\frac{4 v^{2}-1}{16} B\left(\frac{s+1}{2},-\frac{s}{2}\right)\right]$
$\mathcal{T}_{v}(s)=\int_{0}^{\infty} \mathrm{d} x x^{-s-1}\left\{\ln \left[\sqrt{2 \pi}\left(1+x^{2}\right)^{1 / 4} \mathrm{e}^{-x} I_{v}(x)\right]+\frac{4 v^{2}-1}{8 \sqrt{x^{2}+1}}\right\}$.
Since the above integral is now finite at $s=-1$ we can Laurent-expand without any difficulty about $s=-1$, finding
$\zeta_{v}(s)=\frac{1-4 v^{2}}{8 \pi} \frac{1}{s+1}+\frac{1-4 v^{2}}{8 \pi}(-1+\ln 2)-\frac{1}{4}+\frac{1}{\pi} \mathcal{T}_{v}(-1)+\mathrm{O}(s+1)$.
In particular, for $v=0, \mathcal{T}_{0}(-1)=0.7782$ and

$$
\begin{equation*}
\zeta_{0}(s)=\frac{1}{8 \pi} \frac{1}{s+1}-0.0145+\mathrm{O}(s+1) \tag{2.12}
\end{equation*}
$$

2.1.1. The 'complete' zeta function. Next, we go on to the two-dimensional problem. For the free case in $D=2$

$$
d(2, l)=\left\{\begin{array}{l}
d(2,0)=1 \\
d(2, l)=2
\end{array} \quad \text { for } l \neq 0\right.
$$

and $v(2, l)=l, l \geqslant 0$. However, as has already been commented, when a magnetic flux line threads the origin the v 's become $|l-\alpha|$'s ([1, 4]). Therefore, the mode sum yields the following complete spectral zeta function

$$
\begin{equation*}
\varepsilon^{s} \zeta_{\mathcal{M}}(s ; \alpha)=\sum_{l=-\infty}^{\infty} \zeta_{|l-\alpha|}(s) \tag{2.13}
\end{equation*}
$$

(in our case, $\varepsilon=a^{-1}$). Since this function has the properties

$$
\begin{align*}
& \zeta_{\mathcal{M}}(s ; \alpha+k)=\zeta_{\mathcal{M}}(s ; \alpha) \quad k \in \mathbb{Z} \tag{2.14}\\
& \zeta_{\mathcal{M}}(s ;-\alpha)=\zeta_{\mathcal{M}}(s ; \alpha)
\end{align*}
$$

(see [4]), it is enough to study it for $0 \leqslant \alpha \leqslant \frac{1}{2}$. Introducing

$$
\begin{equation*}
\overline{\zeta_{\mathcal{M}}}(s ; \beta) \equiv a^{s} \sum_{l=0}^{\infty} \zeta_{l+\beta}(s) \tag{2.15}
\end{equation*}
$$

we can write

$$
\begin{align*}
\zeta_{\mathcal{M}}(s ; \alpha) & =\overline{\zeta_{\mathcal{M}}}(s ; \alpha)+\overline{\zeta_{\mathcal{M}}}(s ; 1-\alpha) \tag{2.16}\\
& =a^{s} \zeta_{|\alpha|}(s)+\overline{\zeta_{\mathcal{M}}}(s ; 1+\alpha)+\overline{\zeta_{\mathcal{M}}}(s ; 1-\alpha) \tag{2.17}
\end{align*}
$$

Next we insert expression (2.2) into (2.15) and, using

$$
\begin{equation*}
\sum_{l=0}^{\infty}(l+\beta)^{-s}=\zeta_{\mathrm{H}}(s, \beta) \tag{2.18}
\end{equation*}
$$

where ζ_{H} stands for the Hurwitz zeta function, we find

$$
\begin{align*}
\overline{\zeta_{\mathcal{M}}}(s ; \beta)=\frac{1}{4} & \sigma_{1} a^{s} \zeta_{\mathrm{H}}(s, \beta)+a^{s} \frac{s}{\pi} \sin \frac{\pi s}{2}\left[\sigma _ { 2 } \left\{\frac{1}{2 s} B\left(\frac{s+1}{2},-\frac{s}{2}\right)\right.\right. \\
& \left.+2^{s-1} B\left(\frac{s+1}{2},-s\right)+2^{s-1} B\left(\frac{s+3}{2},-s\right)\right\} \zeta_{\mathrm{H}}(s-1, \beta) \\
& +\mathcal{S}_{N}(s, l+\beta)(l+\beta)^{-s}+\frac{1}{2} \rho B\left(\frac{s+1}{2},-\frac{s}{2}\right) \zeta_{\mathrm{H}}(s+1, \beta) \\
& \left.+\overline{\mathcal{J}}_{1}(s) \zeta_{\mathrm{H}}(s+1, \beta)+\sum_{n=2}^{N} \mathcal{J}_{n}(s) \zeta_{\mathrm{H}}(s+n, \beta)\right] \tag{2.19}
\end{align*}
$$

where the values of σ_{1}, σ_{2} and ρ are those in (2.2). Taking $N=4$ and Laurent-expanding, this may be written as
$\overline{\zeta_{\mathcal{M}}}(s ; \beta)=\frac{1}{a}\left[-\frac{1}{4} \zeta_{\mathrm{H}}(-1, \beta)+\frac{1}{\pi}\left\{\frac{1}{4} \zeta_{\mathrm{H}}(-2, \beta)-\frac{5}{24} \zeta_{\mathrm{H}}(0, \beta)-\frac{229}{40320} \zeta_{\mathrm{H}}(2, \beta)\right.\right.$

$$
\begin{align*}
& +\frac{35}{65536} \zeta_{\mathrm{H}}(3, \beta)+\sum_{l=0}^{\infty} S_{4}(-1, l+\beta)(l+\beta) \\
& +\left(-\frac{\pi}{256}-\frac{1}{2} \zeta_{\mathrm{H}}(-2, \beta)+\frac{1}{8} \zeta_{\mathrm{H}}(0, \beta)\right)\left(\frac{1}{s+1}+\ln a-1\right) \\
& -\frac{\pi}{64}+\frac{\ln 2}{16}-\beta \frac{\ln 2}{8}+\frac{\pi \psi(\beta)}{256}-\left(1+\frac{1}{2} \ln 2\right) \zeta_{\mathrm{H}}(-2, \beta) \\
& \left.\left.-\frac{1}{2} \zeta_{\mathrm{H}}^{\prime}(-2, \beta)+\frac{1}{8} \zeta_{\mathrm{H}}^{\prime}(0, \beta)\right\}+\mathrm{O}(s+1)\right] \tag{2.20}
\end{align*}
$$

Concerning the pole at $s=-1$ of the complete zeta function, by (2.17), (2.11) and (2.20), and noticing that $\zeta_{\mathrm{H}}(-2,1+\alpha)+\zeta_{\mathrm{H}}(-2,1-\alpha)=-\alpha^{2}$, we come to

$$
\begin{equation*}
\zeta_{\mathcal{M}}(s ; \alpha)=\frac{1}{a}\left[-\frac{1}{128} \frac{1}{s+1}+\mathrm{O}\left((s+1)^{0}\right)\right] \tag{2.21}
\end{equation*}
$$

i.e. the residue is independent of α.

Since we plan to use the same three formulae for calculating the finite parts, it will be necessary to obtain $\zeta_{\mathrm{H}}^{\prime}(-2, \beta)$ and $\zeta_{\mathrm{H}}^{\prime}(0, \beta)$ about $\beta=1$. The second is known (see, e.g., [17]) and amounts to

$$
\begin{equation*}
\zeta_{\mathrm{H}}^{\prime}(0, \beta)=\ln \Gamma(\beta)-\frac{1}{2} \ln (2 \pi) \tag{2.22}
\end{equation*}
$$

but the first will still give us still some further trouble. Details about its numerical evaluation are supplied in the appendix.

3. Numerical results and comments

We start by the $l=0$ partial wave zeta-functions obtained from (2.11). Since we are supposing $\alpha \geqslant 0$, the results will be denoted by

$$
\begin{equation*}
a^{s} \zeta_{\alpha}(s)=\frac{1}{a}\left[r_{\alpha}\left(\frac{1}{s+1}+\ln a\right)+p_{\alpha}\right]+\mathrm{O}(s+1) \tag{3.1}
\end{equation*}
$$

where the residues r_{α} and the finite parts p_{α} are listed in table 1 . The absence of a pole for $\alpha=\frac{1}{2}$ may be regarded as a consequence of the fact that $J_{1 / 2}(x) \propto \sin x$, and therefore $\zeta_{1 / 2}(x)=\pi^{-s} \zeta_{\mathrm{R}}(s)$ (ζ_{R} meaning the Riemann zeta function), which is finite at $s=-1$ because $\zeta_{\mathrm{R}}(-1)=-1 / 12$. Next, we find $\overline{\zeta_{\mathcal{M}}}(s ; \beta)$ from (2.20) for the corresponding $\beta=1 \pm \alpha$'s. We shall employ the notation

$$
\begin{equation*}
\overline{\zeta_{\mathcal{M}}}(s ; \beta)=\frac{1}{a}\left[\bar{r}_{\beta}\left(\frac{1}{s+1}+\ln a\right)+\bar{p}_{\beta}\right]+\mathrm{O}(s+1) \tag{3.2}
\end{equation*}
$$

and list $\bar{r}_{\beta}, \bar{p}_{\beta}$ in table 2 . Now using equation (2.17) and the above results we get

$$
\begin{equation*}
\zeta_{\mathcal{M}}(s ; \alpha)=\frac{1}{a}\left[-\frac{1}{128}\left(\frac{1}{s+1}+\ln a\right)+q_{\alpha}\right]+\mathrm{O}(s+1) \tag{3.3}
\end{equation*}
$$

where the α-indepedence of the resdiue has already been explained, and

$$
q_{\alpha}=p_{\alpha}+\bar{p}_{1+\alpha}+\bar{p}_{1-\alpha}
$$

The values of q_{α} for different α 's between 0 and $\frac{1}{2}$ are given in table 3. By equation (1.5), the zeta-regularized and PP-renormalized Casimir energy is

$$
\begin{equation*}
E_{C}(\mu, a, \alpha)=\frac{1}{a}\left[-\frac{1}{128} \ln (a \mu)+q_{\alpha}\right] \tag{3.4}
\end{equation*}
$$

In particular for $\alpha=0$ one gets the vacuum energy of a free scalar field inside the circular domain and satisfying the Dirichlet condition on the boundary, which is

$$
E_{C}(\mu, a, \alpha=0)=\frac{1}{a}\left[-\frac{1}{128} \ln (a \mu)+0.0090\right] .
$$

Table 1. Residues and finite parts of the $l=0$ partial wave zeta function at $s=-1$.

α	r_{α}	p_{α}
0	$1 / 8 \pi=0.0398$	-0.0145
0.1	$0.12 / \pi=0.0382$	-0.0597
0.2	$0.105 / \pi=0.0334$	-0.1077
0.3	$0.08 / \pi=0.0225$	-0.1578
0.4	$0.045 / \pi=0.0143$	-0.2093
$\frac{1}{2}$	0	$-\pi / 12=-0.2618$

Table 2. Residues and finite parts of the zeta function $\overline{\zeta_{\mathcal{M}}}(s ; \beta)$ at $s=-1$.

β	\bar{r}_{β}	\bar{p}_{β}
$\frac{1}{2}$	$-1 / 256=-0.0039$	-0.0547
0.6	$-0.0165 / \pi-1 / 256=-0.0091$	-0.0510
0.7	$-0.032 / \pi-1 / 256=-0.0141$	-0.0429
0.8	$-0.0455 / \pi-1 / 256=-0.0184$	-0.0299
0.9	$-0.056 / \pi-1 / 256=-0.0217$	-0.0117
1	$-1 / 16 \pi-1 / 256=-0.0238$	0.0117
1.1	$-0.064 / \pi-1 / 256=-0.0243$	0.0406
1.2	$-0.0595 / \pi-1 / 256=-0.0228$	0.0749
1.3	$-0.048 / \pi-1 / 256=-0.0192$	0.1146
1.4	$-0.0285 / \pi-1 / 256=-0.0130$	0.1597
$\frac{3}{2}$	$-1 / 256=-0.0039$	0.2100

Table 3. Finite parts of the complete zeta function at $s=-1$.

α	q_{α}
0	0.0090
0.1	-0.0308
0.2	-0.0627
0.3	-0.0860
0.4	-0.1006
0.5	-0.1065

Figure 1. Zero-point energy at $\mu=1 / a$ and $a=1$, as a function of the reduced flux α. Clearly, this function is fairly well approximated by a second-degree polynomial (here $\left.0.426 \alpha^{2}-0.444 \alpha+0.009\right)$.

Taking $\mu=1 / a, a=1$, this zero-point energy is plotted in figure 1 as a function of α. Although all this is for $s=-1$, the energy is easily approximated by a second degree
polynomial, as happens also with $\zeta_{\mathcal{M}}(s=2 ; \alpha)$ (the first reference cited in [1]). The issue of the physical character of this magnitude remains somewhat on an unsatisfactory footing, as equation (3.4) is a scheme-dependent result. However, given that before extracting finite parts all infinities are α-independent, we may conjecture that different renormalizations just fix the origin but the α-dependence remains unchanged. Specifically, in our scheme and in the conditions of figure 1, we realize that the effect of introducing magnetic flux is to lower the zero-point energy of the free case, reversing its sign at $\alpha \simeq 0.02$.

Appendix. s-derivative of the Hurwitz zeta function $\zeta_{\mathbf{H}}(s, \beta)$ at $s=-2$ about $\beta=1$
Here we outline our method for the numerical calculation of

$$
\zeta_{\mathrm{H}}^{\prime}(-2, \beta)=\left.\frac{\mathrm{d}}{\mathrm{~d} s} \zeta_{\mathrm{H}}(s, \beta)\right|_{s=-2}
$$

when β is close to 1 . For $\beta=1+\alpha$ (small α) we have $\zeta_{\mathrm{H}}(s, 1+\alpha)=\zeta_{\mathrm{H}}(s, \alpha)-\alpha^{-s}$ and therefore

$$
\begin{equation*}
\zeta_{\mathrm{H}}^{\prime}(-2,1+\alpha)=\zeta_{\mathrm{H}}^{\prime}(-2, \alpha)+\alpha^{2} \ln \alpha . \tag{A.1}
\end{equation*}
$$

Let us find $\zeta_{\mathrm{H}}^{\prime}(-2, \alpha)$ about $\alpha=0$. First we take

$$
\begin{equation*}
\zeta_{\mathrm{H}}(z, \alpha)=\alpha^{-z}+\frac{1}{\Gamma(z)} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \alpha^{k} \Gamma(z+k) \zeta_{\mathrm{R}}(z+k) \tag{A.2}
\end{equation*}
$$

valid when $\operatorname{Re} z$ is large enough (ζ_{R} denotes the Riemann zeta function). We shall continue it back to $z=-2$, being very careful with all the terms containing poles and zeros at this point. Then

$$
\begin{align*}
\zeta_{\mathrm{H}}(-2+\epsilon, \alpha) & =\alpha^{2}(1-\epsilon \ln \alpha)+\sum_{k=0}^{2} \frac{2 \alpha^{k}}{k!(2-k)!}\left\{\zeta_{\mathrm{R}}(k-2)+\left[\zeta_{\mathrm{R}}^{\prime}(k-2)\right.\right. \\
& \left.\left.+\zeta_{\mathrm{R}}(k-2)(\psi(3-k)-\psi(3))\right] \epsilon\right\} \\
& -\frac{\alpha^{3}}{3}(1-\psi(3) \epsilon)+2 \epsilon \sum_{k=4}^{\infty} \frac{(-1)^{k}}{k!} \alpha^{k} \Gamma(k-2) \zeta_{\mathrm{R}}(k-2)+\mathrm{O}\left(\epsilon^{2}\right) \tag{A.3}
\end{align*}
$$

and the r.h.s. of (A.1) is given by

$$
\begin{align*}
&\left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon} \zeta_{\mathrm{H}}(-2+\epsilon, \alpha)\right|_{\epsilon=0}+\alpha^{2} \ln \alpha \\
&= \sum_{k=0}^{2} \frac{2 \alpha^{k}}{k!(2-k)!}\left[\zeta_{\mathrm{R}}^{\prime}(k-2)+\zeta_{\mathrm{R}}(k-2)(\psi(3-k)-\psi(3))\right] \\
&+\frac{\alpha^{3}}{3} \psi(3)+2 \sum_{k=4}^{\infty} \frac{(-1)^{k}}{k!} \alpha^{k} \Gamma(k-2) \zeta_{\mathrm{R}}(k-2) \tag{A.4}
\end{align*}
$$

This is the series to be used for the required numerical calculations. When applying it, we will bear in mind that the first two terms contain

$$
\begin{align*}
& \zeta_{R}^{\prime}(-2)=-\frac{1}{4 \pi^{2}} \zeta_{R}(3)=-0.030448 \\
& \zeta_{R}^{\prime}(-1)=-0.165421 \tag{A.5}\\
& \zeta_{R}^{\prime}(0)=-\frac{1}{2} \ln (2 \pi)
\end{align*}
$$

where the first result comes from the Riemann zeta function reflexion formula, the second may be found, e.g., in [18] and the third is the $\beta=1$ case of (2.22).

Acknowledgments

E Elizalde, A A Kvitsinsky and S Leseduarte are thanked for comments and discussions. I am grateful to Generalitat de Catalunya-Comissionat per a Universitats i Recerca for a RED fellowship, and to CIRIT for further support.

References

[1] Berry M V 1986 J. Phys. A: Math. Gen. 19 2281; 1987 J. Phys. A: Math. Gen. 202389
[2] Berry M V and Robnik M 1986 J. Phys. A: Math. Gen. 19649
[3] Itzykson C, Moussa P and Luck J M 1986 J. Phys. A: Math. Gen. 19 L111
Ziff R M 1986 J. Phys. A: Math. Gen. 193923
[4] Steiner F 1987 Fort. Phys. 3587
[5] Casimir H B G 1948 Proc. Kon. Ned. Akad. Wetenschap. 51793
[6] Ambjørn J and Wolfram S 1983 Ann. Phys. 1471
[7] Plunien G, Müller B and Greiner W 1986 Phys. Rep. 13487
[8] Blau S K, Visser M and Wipf A 1988 Nucl. Phys. B 310163
[9] Nielsen N K and Olesen P 1978 Nucl. Phys. B 144376
[10] Elizalde E, Leseduarte S and Romeo A 1993 J. Phys. A: Math. Gen. 262409
[11] Leseduarte S and Romeo A 1994 J. Phys. A: Math. Gen. 272483
[12] Watson G N 1944 A Treatise on the Theory of Bessel Functions 2nd edn (Cambridge: Cambridge University Press)
Kishore N 1963 Proc. Amer. Math. Soc. 14527
Obi E C 1975 J. Math. Anal. Appl. 52648
Hawkins J 1983 On a zeta function associated with Bessel's equation PhD Thesis University of Illinois Stolarsky K B 1985 Mathematika 3296
[13] Romeo A 1995 Phys. Rev. D 527308
[14] Barvinsky A O, Kamenshchik A Yu and Karmazin I P 1992 Ann. Phys. 219201
[15] 1995 Kvitsinsky A A, J. Phys. A: Math. Gen. 28 1753; 1995 J. Math. Anal. Appl. 196947
[16] Vilenkin N Ja 1969 Fonctions spéciales et théorie de la répresentation des groups (Paris: Dunod)
[17] Bateman Manuscript Project (Erdélyi A et al) 1953 Higher Transendental Functions (New York: McGrawHill)
[18] Elizalde E, Odintsov S D, Romeo A, Bytsenko A A and Zerbini S 1994 Zeta Regularization Techniques with Applications (Singapore: World Scientific)

[^0]: \dagger E-mail: august@ceab.es, august@zeta.ecm.ub.es

[^1]: \dagger In the mathematical literature, this object taken at even integer s is sometimes called the Rayleigh function [12].

