

Home Search Collections Journals About Contact us My IOPscience

Scalar Casimir effect in a circular Aharonov - Bohm quantum billiard

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1996 J. Phys. A: Math. Gen. 29 3697 (http://iopscience.iop.org/0305-4470/29/13/034)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.70 The article was downloaded on 02/06/2010 at 03:55

Please note that terms and conditions apply.

Scalar Casimir effect in a circular Aharonov–Bohm quantum billiard

August Romeo-i-Val†

Blanes Centre for Advanced Studies (CEAB), CSIC, Camí de Santa Bàrbara, 17300 Blanes, La Selva (Girona-Catalonia), Spain

Received 18 December 1995

Abstract. This is a study of the Casimir energy associated to a circular quantum billiard threaded by a single line of flux coming from an external magnetic field. Zero-point energies are calculated after applying zeta-function regularization to eigenmode sums and using some recently obtained representations of Bessel zeta functions for negative arguments. The overall flux dependence can be approximated by a quadratic curve.

1. Introduction

Let us consider the quantum mechanical problem of a scalar particle inside a circular Aharonov–Bohm quantum billiard [1–4] of radius *a* from the viewpoint of field theory. We take a massless field, with a space-dependent part which we call ϕ , and whose eigenmodes ω satisfy the equation (in units such that $\hbar = c = 1$)

$$(-i\nabla - eA)^2 \phi = \omega^2 \phi \tag{1.1}$$

where the vector potential A is given by

$$A_r = 0 \qquad A_{\varphi} = \frac{\Phi}{2\pi r} \tag{1.2}$$

and

$$\alpha = \frac{e\Phi}{2\pi} \tag{1.3}$$

is called the *reduced flux*. Since a billiard is a domain with perfectly reflecting walls, and we imagine an infinitely thin solenoid at the origin—reduced, in D = 2, to an unattainable point—the boundary conditions are $\phi = 0$ at r = 0 and r = a. When there is no flux (free case), the eigenmodes in these circumstances are the zeros of Bessel functions with integer indices l coming from the angular momentum. The solutions for non-zero α have been found in [1, 4], and basically correspond to an index shift with respect to the free case $|l| \rightarrow |l - \alpha|$. Later we shall deal with the associated spectrum, but we will first briefly review the zeta function formalism for calculating Casimir energies.

Zero-point energies emerge from mode-sums $\frac{1}{2}\sum_{n}\omega_{n}$, and give rise to the celebrated Casimir effect [5–8] (if we were not using the typical QFT units, we should add a factor $\hbar c$ to this sum). Note that the summation extends over all the ω_{n} 's in the set of eigenmodes. As a result, such quantities do usually diverge and call for some regularization to make

3697

[†] E-mail: august@ceab.es, august@zeta.ecm.ub.es

^{0305-4470/96/133697+09\$19.50 © 1996} IOP Publishing Ltd

sense of them. To this end, we introduce the usual spectral zeta functions, which will be denoted by

$$\zeta_{\mathcal{M}}(s) = \sum_{n} \omega_{n}^{-s} \qquad \zeta_{\mathcal{M}/\mu}(s) = \sum_{n} \left(\frac{\omega_{n}}{\mu}\right)^{-s}.$$
(1.4)

where μ is an arbitrary scale with mass dimensions, used to work with dimensionless objects. As they stand, these identities hold only for Re $s > s_0$, being s_0 a positive value given by the rightmost pole of $\zeta_{\mathcal{M}}(s)$. However, such a function admits analytic continuation to other values of s, in particular, to negative reals. Then, the finite part of the vacuum energy, E_C , can be found by combining zeta-regularization of the mode-sum and a principal part prescription from [8]:

$$E_C(\mu) = d_f \Pr_{s \to -1} \left[\frac{1}{2} \mu \zeta_{\mathcal{M}/\mu}(s) \right]$$
(1.5)

where PP denotes principal part and d_f is the number of degrees of freedom associated with the field (in our case, reasoning as in [9], for example, one realizes that $d_f = 2$). Evidently, for this procedure to work we must be able to obtain the analytic continuation of $\zeta_{\mathcal{M}}(s)$ at least to a part of the negative real axis reaching s = -1. This point makes our mathematical problem completely different to that in [1–4]; there the aim was the calculation of the ground state energy (and even the next low-lying energies) by the spectral sum method, which only needs values of $\zeta_{\mathcal{M}}(s)$ at positive s's. Now, the analytic continuation of the spectral zeta function to the negative real axis appears as a non-trivial matter.

Since in free or Aharonov–Bohm circular quantum billiards the eigenmodes are zeros of J_{ν} Bessel functions, we shall introduce the following 'partial-wave' zeta functions for fixed values of ν :

$$\zeta_{\nu}(s) = \sum_{n=1}^{\infty} j_{\nu,n}^{-s}$$
 for Res > 1 (1.6)

where j_{vn} denotes the *n*th non-vanishing zero of J_v (see also [10, 11])[†]. (Discrete versions of the Bessel problem, their solutions and associated zeta functions have also been studied in [15].)

When considering the whole problem in a *D*-dimensional space, one must take into account the degeneracy d(D, l) of each angular mode in *D* dimensions. Therefore, we define the 'complete' spherical zeta function

$$\zeta_{\mathcal{M}}(s) = a^{s} \sum_{l=l_{\min}}^{\infty} d(D,l) \sum_{n=1}^{\infty} j_{\nu(D,l),n}^{-s} = a^{s} \sum_{l=l_{\min}}^{\infty} d(D,l) \,\zeta_{\nu(D,l)}(s) \tag{1.7}$$

where l_{\min} is the minimum value of l, $\nu(D, l) = l + D/2 - 1$ and the general form of d(D, l) (see, e.g., [16]) is

$$d(D, l) = (2l + D - 2) \frac{(l + D - 3)!}{l!(D - 2)!}.$$
(1.8)

In section 2 we construct these zeta functions for D = 2, obtaining their analytic continuation to s = -1. The numerical results for the zero-point energy are discussed in section 3. A calculation of a necessary derivative of the Hurwitz zeta function is outlined in the appendix.

† In the mathematical literature, this object taken at even integer s is sometimes called the Rayleigh function [12].

2. The spectral zeta function

2.1. The 'partial-wave' zeta function

Computing the Casimir energy by (1.5) requires the knowledge of the Bessel zeta functions (1.6) at s = -1, while the complex domain where (1.6) holds is bounded by Re s = 1. This is a serious difficulty, but we know that $\zeta_{\nu}(s)$ admits an analytic continuation to other values of s. Moreover, in [10, 11] we showed how to obtain an integral representation of this continuation valid for -1 < Re s < 0, which reads

$$\zeta_{\nu}(s) = \frac{s}{\pi} \sin \frac{\pi s}{2} \int_0^\infty dx \ x^{-s-1} \ln \left[\sqrt{2\pi x} \, \mathrm{e}^{-x} I_{\nu}(x) \right] \qquad \text{for} \quad -1 < \mathrm{Re} \, s < 0.$$
(2.1)

Whenever $\nu \neq 0$ we can work out (2.1) as explained in [13], arriving at

$$\zeta_{\nu}(s) = \frac{1}{4}\sigma_{1}\nu^{-s} + \nu^{-s}\frac{s}{\pi}\sin\frac{\pi s}{2} \left[\sigma_{2}\left\{\frac{1}{2s}B\left(\frac{s+1}{2}, -\frac{s}{2}\right) + 2^{s-1}B\left(\frac{s+1}{2}, -s\right)\right. \\ \left. + 2^{s-1}B\left(\frac{s+3}{2}, -s\right)\right\}\nu + \mathcal{S}_{N}(s,\nu) + \frac{1}{2}\rho B\left(\frac{s+1}{2}, -\frac{s}{2}\right)\frac{1}{\nu} \\ \left. + \overline{\mathcal{J}}_{1}(s)\frac{1}{\nu} + \sum_{n=2}^{N}\mathcal{J}_{n}(s)\frac{1}{\nu^{n}}\right] \qquad \text{with} \quad \sigma_{1} = -1 \quad \sigma_{2} = 1 \quad \rho = \frac{1}{8}.$$
 (2.2)

In addition

$$\overline{\mathcal{I}}_{1}(s) = -\frac{5}{24} B\left(\frac{s+3}{2}, -\frac{s}{2}\right)$$

$$\mathcal{I}_{n}(s) = \int_{0}^{\infty} dx \ x^{-s-1} \mathcal{U}_{n}(t(x)) \qquad t(x) = \frac{1}{\sqrt{1+x^{2}}}$$
(2.3)

where

$$\begin{aligned} \mathcal{U}_{1}(t) &= \frac{1}{8}t - \frac{5}{24}5t^{3} \\ \mathcal{U}_{2}(t) &= \frac{1}{16}t^{2} - \frac{3}{8}t^{4} + \frac{5}{16}t^{6} \\ \mathcal{U}_{3}(t) &= \frac{25}{384}t^{3} - \frac{531}{640}t^{5} + \frac{221}{128}t^{7} - \frac{1105}{1152}t^{9} \\ \mathcal{U}_{4}(t) &= \frac{13}{128}t^{4} - \frac{71}{32}t^{6} + \frac{531}{64}t^{8} - \frac{339}{32}t^{10} + \frac{565}{128}t^{12} \\ \vdots \end{aligned}$$

$$(2.4)$$

and

$$S_N(s,\nu) \equiv \int_0^\infty dx \ x^{-s-1} \left\{ \ln \left[\sqrt{2\pi\nu} (1+x^2)^{1/4} e^{-\nu\eta(x)} I_\nu(\nu x) \right] - \sum_{n=1}^N \frac{\mathcal{U}_n(t(x))}{\nu^n} \right\}$$
(2.5)
$$\eta(x) = \sqrt{1+x^2} + \ln \frac{x}{1+\sqrt{1+x^2}}$$

the key point being that $S_N(s, \nu)$ is a *finite* integral at s = -1 (The method used in that reference also has similarities to the technique in [14]).

The expressions for the $\mathcal{J}_n(s)$'s are easily obtained from the $\mathcal{U}_n(t)$'s in (2.4). In fact, since

$$\int_0^\infty dx \ x^{-s-1} t(x)^m = \frac{1}{2} B\left(\frac{s+m}{2}, -\frac{s}{2}\right)$$
(2.6)

the result of the integration is like making the replacement

$$\mathcal{U}_{n}(t) \to \mathcal{J}_{n}(s)$$

$$t^{m} \to \frac{1}{2}B\left(\frac{s+m}{2}, -\frac{s}{2}\right).$$
(2.7)

Expression (2.2) is not valid for v = 0, since it was obtained from a rescaling $x \to vx$ and subsequent application of uniform asymptotic expansions in vx. Furthermore, numerically speaking it is of little use if v is very small. An alternative representation valid in these conditions is called for. Starting from (2.1), we introduce $1 = \sqrt{x}(1 + x^2)^{1/4}/\sqrt{x}(1 + x^2)^{1/4}$ into the logarithm, separate $\ln(\sqrt{x}/(1 + x^2)^{1/4})$ and integrate, which takes us to

$$\zeta_{\nu}(s) = -\frac{1}{4} + \frac{s}{\pi} \sin \frac{\pi s}{2} \int_0^\infty dx \ x^{-s-1} \ln \left[\sqrt{2\pi} (1+x^2)^{1/4} e^{-x} I_{\nu}(x) \right].$$
(2.8)

Next, we will subtract and add the asymptotic behaviour of the integrand, which gives rise to a logarithmic divergence on integration. When doing so, we shall write the large-x expansion of $\ln[\cdots]$ as follows:

$$\ln\left[\sqrt{2\pi}(1+x^2)^{1/4}\,\mathrm{e}^{-x}I_\nu(x)\right] = -\frac{4\nu^2 - 1}{8x} + O\left(\frac{1}{x^2}\right) = -\frac{4\nu^2 - 1}{8\sqrt{x^2 + 1}} + O\left(\frac{1}{x^2 + 1}\right).$$
(2.9)

Thus, the piece we separate can be integrated with the help of (2.6) (m = 1 case) and we are left with

$$\zeta_{\nu}(s) = -\frac{1}{4} + \frac{s}{\pi} \sin \frac{\pi s}{2} \left[\mathcal{T}_{\nu}(s) - \frac{4\nu^2 - 1}{16} B\left(\frac{s+1}{2}, -\frac{s}{2}\right) \right]$$

$$\mathcal{T}_{\nu}(s) = \int_{0}^{\infty} dx \ x^{-s-1} \left\{ \ln \left[\sqrt{2\pi} (1+x^2)^{1/4} e^{-x} I_{\nu}(x) \right] + \frac{4\nu^2 - 1}{8\sqrt{x^2 + 1}} \right\}.$$
 (2.10)

Since the above integral is now finite at s = -1 we can Laurent-expand without any difficulty about s = -1, finding

$$\zeta_{\nu}(s) = \frac{1 - 4\nu^2}{8\pi} \frac{1}{s+1} + \frac{1 - 4\nu^2}{8\pi} (-1 + \ln 2) - \frac{1}{4} + \frac{1}{\pi} \mathcal{T}_{\nu}(-1) + \mathcal{O}(s+1).$$
(2.11)

In particular, for $\nu = 0$, $T_0(-1) = 0.7782$ and

$$\zeta_0(s) = \frac{1}{8\pi} \frac{1}{s+1} - 0.0145 + O(s+1).$$
(2.12)

2.1.1. The 'complete' zeta function. Next, we go on to the two-dimensional problem. For the free case in D = 2

$$d(2, l) = \begin{cases} d(2, 0) = 1\\ d(2, l) = 2 & \text{for } l \neq 0 \end{cases}$$

and $\nu(2, l) = l, l \ge 0$. However, as has already been commented, when a magnetic flux line threads the origin the ν 's become $|l - \alpha|$'s ([1, 4]). Therefore, the mode sum yields the following complete spectral zeta function

$$\varepsilon^{s}\zeta_{\mathcal{M}}(s;\alpha) = \sum_{l=-\infty}^{\infty} \zeta_{|l-\alpha|}(s)$$
(2.13)

(in our case, $\varepsilon = a^{-1}$). Since this function has the properties

$$\zeta_{\mathcal{M}}(s; \alpha + k) = \zeta_{\mathcal{M}}(s; \alpha) \qquad k \in \mathbb{Z}$$

$$\zeta_{\mathcal{M}}(s; -\alpha) = \zeta_{\mathcal{M}}(s; \alpha) \qquad (2.14)$$

(see [4]), it is enough to study it for $0 \leq \alpha \leq \frac{1}{2}$. Introducing

$$\overline{\zeta_{\mathcal{M}}}(s;\beta) \equiv a^s \sum_{l=0}^{\infty} \zeta_{l+\beta}(s)$$
(2.15)

we can write

$$\zeta_{\mathcal{M}}(s;\alpha) = \overline{\zeta_{\mathcal{M}}}(s;\alpha) + \overline{\zeta_{\mathcal{M}}}(s;1-\alpha)$$
(2.16)

$$=a^{s}\zeta_{|\alpha|}(s)+\overline{\zeta_{\mathcal{M}}}(s;1+\alpha)+\overline{\zeta_{\mathcal{M}}}(s;1-\alpha).$$
(2.17)

Next we insert expression (2.2) into (2.15) and, using

$$\sum_{l=0}^{\infty} (l+\beta)^{-s} = \zeta_{\rm H}(s,\beta)$$
(2.18)

where $\zeta_{\rm H}$ stands for the Hurwitz zeta function, we find

$$\overline{\zeta_{\mathcal{M}}}(s;\beta) = \frac{1}{4}\sigma_{1}a^{s}\zeta_{\mathrm{H}}(s,\beta) + a^{s}\frac{s}{\pi}\sin\frac{\pi s}{2} \left[\sigma_{2}\left\{\frac{1}{2s}B\left(\frac{s+1}{2}, -\frac{s}{2}\right)\right\} + 2^{s-1}B\left(\frac{s+1}{2}, -s\right) + 2^{s-1}B\left(\frac{s+3}{2}, -s\right)\right]\zeta_{\mathrm{H}}(s-1,\beta) + \mathcal{S}_{N}(s,l+\beta)(l+\beta)^{-s} + \frac{1}{2}\rho B\left(\frac{s+1}{2}, -\frac{s}{2}\right)\zeta_{\mathrm{H}}(s+1,\beta) + \overline{\mathcal{J}}_{1}(s)\zeta_{\mathrm{H}}(s+1,\beta) + \sum_{n=2}^{N}\mathcal{J}_{n}(s)\zeta_{\mathrm{H}}(s+n,\beta)\right]$$

$$(2.19)$$

where the values of σ_1, σ_2 and ρ are those in (2.2). Taking N = 4 and Laurent-expanding, this may be written as

$$\overline{\zeta_{\mathcal{M}}}(s;\beta) = \frac{1}{a} \left[-\frac{1}{4} \zeta_{\mathrm{H}}(-1,\beta) + \frac{1}{\pi} \left\{ \frac{1}{4} \zeta_{\mathrm{H}}(-2,\beta) - \frac{5}{24} \zeta_{\mathrm{H}}(0,\beta) - \frac{229}{40320} \zeta_{\mathrm{H}}(2,\beta) \right. \\ \left. + \frac{35}{65536} \zeta_{\mathrm{H}}(3,\beta) + \sum_{l=0}^{\infty} S_4(-1,l+\beta)(l+\beta) \right. \\ \left. + \left(-\frac{\pi}{256} - \frac{1}{2} \zeta_{\mathrm{H}}(-2,\beta) + \frac{1}{8} \zeta_{\mathrm{H}}(0,\beta) \right) \left(\frac{1}{s+1} + \ln a - 1 \right) \right. \\ \left. - \frac{\pi}{64} + \frac{\ln 2}{16} - \beta \frac{\ln 2}{8} + \frac{\pi \Psi(\beta)}{256} - \left(1 + \frac{1}{2} \ln 2 \right) \zeta_{\mathrm{H}}(-2,\beta) \right. \\ \left. - \frac{1}{2} \zeta_{\mathrm{H}}'(-2,\beta) + \frac{1}{8} \zeta_{\mathrm{H}}'(0,\beta) \right\} + \mathrm{O}(s+1) \left] \right].$$
(2.20)

Concerning the pole at s = -1 of the complete zeta function, by (2.17), (2.11) and (2.20), and noticing that $\zeta_{\rm H}(-2, 1+\alpha) + \zeta_{\rm H}(-2, 1-\alpha) = -\alpha^2$, we come to

$$\zeta_{\mathcal{M}}(s;\alpha) = \frac{1}{a} \left[-\frac{1}{128} \frac{1}{s+1} + \mathcal{O}((s+1)^0) \right]$$
(2.21)

i.e. the residue is independent of α .

Since we plan to use the same three formulae for calculating the finite parts, it will be necessary to obtain $\zeta'_{\rm H}(-2,\beta)$ and $\zeta'_{\rm H}(0,\beta)$ about $\beta = 1$. The second is known (see, e.g., [17]) and amounts to

$$\zeta'_{\rm H}(0,\beta) = \ln \Gamma(\beta) - \frac{1}{2}\ln(2\pi)$$
(2.22)

but the first will still give us still some further trouble. Details about its numerical evaluation are supplied in the appendix.

3. Numerical results and comments

We start by the l = 0 partial wave zeta-functions obtained from (2.11). Since we are supposing $\alpha \ge 0$, the results will be denoted by

$$a^{s}\zeta_{\alpha}(s) = \frac{1}{a} \left[r_{\alpha} \left(\frac{1}{s+1} + \ln a \right) + p_{\alpha} \right] + \mathcal{O}(s+1)$$
(3.1)

where the residues r_{α} and the finite parts p_{α} are listed in table 1. The absence of a pole for $\alpha = \frac{1}{2}$ may be regarded as a consequence of the fact that $J_{1/2}(x) \propto \sin x$, and therefore $\zeta_{1/2}(x) = \pi^{-s}\zeta_{R}(s)$ (ζ_{R} meaning the Riemann zeta function), which is finite at s = -1because $\zeta_{R}(-1) = -1/12$. Next, we find $\overline{\zeta_{\mathcal{M}}}(s;\beta)$ from (2.20) for the corresponding $\beta = 1 \pm \alpha$'s. We shall employ the notation

$$\overline{\zeta_{\mathcal{M}}}(s;\beta) = \frac{1}{a} \left[\overline{r}_{\beta} \left(\frac{1}{s+1} + \ln a \right) + \overline{p}_{\beta} \right] + \mathcal{O}(s+1)$$
(3.2)

and list \overline{r}_{β} , \overline{p}_{β} in table 2. Now using equation (2.17) and the above results we get

$$\zeta_{\mathcal{M}}(s;\alpha) = \frac{1}{a} \left[-\frac{1}{128} \left(\frac{1}{s+1} + \ln a \right) + q_{\alpha} \right] + \mathcal{O}(s+1)$$
(3.3)

where the α -independence of the residue has already been explained, and

$$q_{\alpha} = p_{\alpha} + \overline{p}_{1+\alpha} + \overline{p}_{1-\alpha}.$$

The values of q_{α} for different α 's between 0 and $\frac{1}{2}$ are given in table 3. By equation (1.5), the zeta-regularized and PP-renormalized Casimir energy is

$$E_C(\mu, a, \alpha) = \frac{1}{a} \left[-\frac{1}{128} \ln(a\mu) + q_\alpha \right].$$
 (3.4)

In particular for $\alpha = 0$ one gets the vacuum energy of a *free* scalar field inside the circular domain and satisfying the Dirichlet condition on the boundary, which is

$$E_C(\mu, a, \alpha = 0) = \frac{1}{a} \left[-\frac{1}{128} \ln(a\mu) + 0.0090 \right].$$

Table 1. Residues and finite parts of the l = 0 partial wave zeta function at s = -1.

α	r_{α}	p_{lpha}
0	$1/8\pi = 0.0398$	-0.0145
0.1	$0.12/\pi = 0.0382$	-0.0597
0.2	$0.105/\pi = 0.0334$	-0.1077
0.3	$0.08/\pi = 0.0225$	-0.1578
0.4	$0.045/\pi = 0.0143$	-0.2093
$\frac{1}{2}$	0	$-\pi/12 = -0.2618$

Table 2. Residues and finite parts of the zeta function $\overline{\zeta_{\mathcal{M}}}(s;\beta)$ at s = -1.

β	\overline{r}_{β}	\overline{P}_{eta}
$\frac{1}{2}$	-1/256 = -0.0039	-0.0547
$\overline{0.6}$	$-0.0165/\pi - 1/256 = -0.0091$	-0.0510
0.7	$-0.032/\pi - 1/256 = -0.0141$	-0.0429
0.8	$-0.0455/\pi - 1/256 = -0.0184$	-0.0299
0.9	$-0.056/\pi - 1/256 = -0.0217$	-0.0117
1	$-1/16\pi - 1/256 = -0.0238$	0.0117
1.1	$-0.064/\pi - 1/256 = -0.0243$	0.0406
1.2	$-0.0595/\pi - 1/256 = -0.0228$	0.0749
1.3	$-0.048/\pi - 1/256 = -0.0192$	0.1146
1.4	$-0.0285/\pi - 1/256 = -0.0130$	0.1597
$\frac{3}{2}$	-1/256 = -0.0039	0.2100

Table 3. Finite parts of the complete zeta function at s = -1.

α	q_{lpha}
0	0.0090
0.1	-0.0308
0.2	-0.0627
0.3	-0.0860
0.4	-0.1006
0.5	-0.1065

Figure 1. Zero-point energy at $\mu = 1/a$ and a = 1, as a function of the reduced flux α . Clearly, this function is fairly well approximated by a second-degree polynomial (here $0.426\alpha^2 - 0.444\alpha + 0.009$).

Taking $\mu = 1/a$, a = 1, this zero-point energy is plotted in figure 1 as a function of α . Although all this is for s = -1, the energy is easily approximated by a second degree polynomial, as happens also with $\zeta_{\mathcal{M}}(s = 2; \alpha)$ (the first reference cited in [1]). The issue of the physical character of this magnitude remains somewhat on an unsatisfactory footing, as equation (3.4) is a scheme-dependent result. However, given that before extracting finite parts all infinities are α -independent, we may conjecture that different renormalizations just fix the origin but the α -dependence remains unchanged. Specifically, in our scheme and in the conditions of figure 1, we realize that the effect of introducing magnetic flux is to lower the zero-point energy of the free case, reversing its sign at $\alpha \simeq 0.02$.

Appendix. s-derivative of the Hurwitz zeta function $\zeta_{\rm H}(s,\beta)$ at s=-2 about $\beta=1$

Here we outline our method for the numerical calculation of

$$\zeta'_{\rm H}(-2,\,\beta) = \left.\frac{\rm d}{{\rm d}s}\zeta_{\rm H}(s,\,\beta)\right|_{s=-2}$$

when β is close to 1. For $\beta = 1 + \alpha$ (small α) we have $\zeta_{\rm H}(s, 1 + \alpha) = \zeta_{\rm H}(s, \alpha) - \alpha^{-s}$ and therefore

$$\zeta'_{\rm H}(-2, 1+\alpha) = \zeta'_{\rm H}(-2, \alpha) + \alpha^2 \ln \alpha.$$
 (A.1)

Let us find $\zeta'_{\rm H}(-2,\alpha)$ about $\alpha = 0$. First we take

$$\zeta_{\rm H}(z,\alpha) = \alpha^{-z} + \frac{1}{\Gamma(z)} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \alpha^k \Gamma(z+k) \zeta_{\rm R}(z+k)$$
(A.2)

valid when Re z is large enough (ζ_R denotes the Riemann zeta function). We shall continue it back to z = -2, being very careful with all the terms containing poles and zeros at this point. Then

$$\zeta_{\rm H}(-2+\epsilon,\alpha) = \alpha^2 (1-\epsilon \ln \alpha) + \sum_{k=0}^2 \frac{2\alpha^k}{k!(2-k)!} \{ \zeta_{\rm R}(k-2) + [\zeta_{\rm R}'(k-2) + \zeta_{\rm R}(k-2)(\psi(3-k)-\psi(3))] \}$$

+ $\zeta_{\rm R}(k-2)(\psi(3-k)-\psi(3)) \}$
- $\frac{\alpha^3}{3}(1-\psi(3)\epsilon) + 2\epsilon \sum_{k=4}^\infty \frac{(-1)^k}{k!} \alpha^k \Gamma(k-2) \zeta_{\rm R}(k-2) + O(\epsilon^2)$ (A.3)

and the r.h.s. of (A.1) is given by

$$\frac{d}{d\epsilon} \zeta_{\rm H}(-2+\epsilon,\alpha) \Big|_{\epsilon=0} + \alpha^2 \ln \alpha$$

$$= \sum_{k=0}^2 \frac{2\alpha^k}{k!(2-k)!} \Big[\zeta_{\rm R}'(k-2) + \zeta_{\rm R}(k-2)(\psi(3-k) - \psi(3)) \Big]$$

$$+ \frac{\alpha^3}{3} \psi(3) + 2 \sum_{k=4}^\infty \frac{(-1)^k}{k!} \alpha^k \Gamma(k-2) \zeta_{\rm R}(k-2). \tag{A.4}$$

This is the series to be used for the required numerical calculations. When applying it, we will bear in mind that the first two terms contain

$$\begin{aligned} \zeta_{\rm R}'(-2) &= -\frac{1}{4\pi^2} \zeta_{\rm R}(3) = -0.030\ 448\\ \zeta_{\rm R}'(-1) &= -0.165\ 421\\ \zeta_{\rm R}'(0) &= -\frac{1}{2}\ln(2\pi) \end{aligned} \tag{A.5}$$

where the first result comes from the Riemann zeta function reflexion formula, the second may be found, e.g., in [18] and the third is the $\beta = 1$ case of (2.22).

Acknowledgments

E Elizalde, A A Kvitsinsky and S Leseduarte are thanked for comments and discussions. I am grateful to Generalitat de Catalunya—Comissionat per a Universitats i Recerca for a RED fellowship, and to CIRIT for further support.

References

- [1] Berry M V 1986 J. Phys. A: Math. Gen. 19 2281; 1987 J. Phys. A: Math. Gen. 20 2389
- [2] Berry M V and Robnik M 1986 J. Phys. A: Math. Gen. 19 649
- [3] Itzykson C, Moussa P and Luck J M 1986 J. Phys. A: Math. Gen. 19 L111
 Ziff R M 1986 J. Phys. A: Math. Gen. 19 3923
- [4] Steiner F 1987 Fort. Phys. 35 87
- [5] Casimir H B G 1948 Proc. Kon. Ned. Akad. Wetenschap. 51 793
- [6] Ambjørn J and Wolfram S 1983 Ann. Phys. 147 1
- [7] Plunien G, Müller B and Greiner W 1986 Phys. Rep. 134 87
- [8] Blau S K, Visser M and Wipf A 1988 Nucl. Phys. B 310 163
- [9] Nielsen N K and Olesen P 1978 Nucl. Phys. B 144 376
- [10] Elizalde E, Leseduarte S and Romeo A 1993 J. Phys. A: Math. Gen. 26 2409
- [11] Leseduarte S and Romeo A 1994 J. Phys. A: Math. Gen. 27 2483
- [12] Watson G N 1944 A Treatise on the Theory of Bessel Functions 2nd edn (Cambridge: Cambridge University Press)
 - Kishore N 1963 *Proc. Amer. Math. Soc.* **14** 527 Obi E C 1975 *J. Math. Anal. Appl.* **52** 648
 - Hawkins J 1983 On a zeta function associated with Bessel's equation *PhD Thesis* University of Illinois
 - Stolarsky K B 1985 Mathematika 32 96
- [13] Romeo A 1995 Phys. Rev. D 52 7308
- [14] Barvinsky A O, Kamenshchik A Yu and Karmazin I P 1992 Ann. Phys. 219 201
- [15] 1995 Kvitsinsky A A, J. Phys. A: Math. Gen. 28 1753; 1995 J. Math. Anal. Appl. 196 947
- [16] Vilenkin N Ja 1969 Fonctions spéciales et théorie de la répresentation des groups (Paris: Dunod)
- Bateman Manuscript Project (Erdélyi A et al) 1953 Higher Transendental Functions (New York: McGraw-Hill)
- [18] Elizalde E, Odintsov S D, Romeo A, Bytsenko A A and Zerbini S 1994 Zeta Regularization Techniques with Applications (Singapore: World Scientific)